

Corporate Presentation

Ascletis Pharma Inc.

January 2022

Ascletis Overview

China & US based **Global Platform Biotech**, covering the entire value chain from discovery and development to manufacturing and commercialization

Focus on **Viral Diseases**, **NASH** and **Oncology** where there are significantly unmet medical needs

Potential **First-in-class/Best-in-class** innovative pipelines, global development with high efficiency

Significant partnerships:

Marketed Products

Marketed Regimen for HCV

Marketed Product for HBV

Included in the NRDL

Pipeline Overview

Disease Areas	Target	Candidate	Commercial rights	Pre-IND	IND	Phase I	Phase IIa	Phase IIb	Phase III / Pivotal
	PD-L1	ASC22 (S.C mAb)	Global	HBV functional c	ure				
	FXR	ASC42 (Oral small molecule)	Global	HBV functional c	ure				
Viral Diseases	PD-L1	ASC22 (S.C mAb)	Global	HIV functional cu	ire				
	RdRp	ASC10 (Oral small molecule)	Global	COVID 19					
	3CLpro	ASC11 (Oral small molecule)	Global	COVID 19					
	FASN	ASC40 (Oral small molecule)	Greater China	NASH					
	FXR	ASC42 (Oral small molecule)	Global	PBC					
Non-alcoholic	THRβ	ASC41 (Oral small molecule)	Global	NASH					
Steatohepatitis/Primary	FXR	ASC42 (Oral small molecule)	Global	NASH					
biliary cholangitis	THRβ + FXR	ASC43F (Oral FDC)	Global	NASH					
	FASN + FXR	ASC44F (Oral FDC)	Global	NASH					
	FASN+THRβ	ASC45F (Oral FDC)	Global	NASH					
	FASN	ASC40 (Oral small molecule)	Greater China	rGBM					
	FASN	ASC40 (Oral small molecule)	Greater China	Drug resistant Br	reast Cancer				
	FASN	ASC40 (Oral small molecule)	Greater China	KRAS mutant NS	CLC				
Oncology	PD-L1	ASC61 (Oral small molecule)	Global	Solid Tumor					
	FASN	ASC60 (Oral small molecule)	Greater China	Solid Tumor 1					
	FASN	ASC60 (Oral small molecule)	Greater China	Solid Tumor 2					
	PD-L1	ASC63 (Oral small molecule)	Global	Solid Tumor					
Exploratory Indications	FASN	ASC40 (Oral small molecule)	Greater China	ACNE					

Viral Diseases

HBV (Functional Cure)

Target	Candidate	Commercial rights	Pre-IND	IND	Phase I	Phase Ila	Phase IIb	Phase III	Competitiveness
PD-L1	ASC22	Global ¹							 First-in-class candidate for HBV functional cure through blocking PD-1/PD-L1 pathway 19% of patients with baseline HBsAg ≤500 IU/mL obtained HBsAg loss and no rebound after the last dosing of ASC22 Improved compliance with subcutaneous injection
FXR	ASC42	Global							First-in-class MOAInhibit transcription from DNA to RNAReduce stability of HBV cccDNA

HIV Immune Restoration/Functional Cure

Target	Candidate	Commercial rights	Pre-IND	IND	Phase I	Phase Ila	Phase IIb	Phase III	Competitiveness
PD-L1	ASC22	Global ¹							Subcutaneous injection, easier administration

^{1.} ASC22 is licensed from Suzhou Alphamab Co.,Ltd. ("Alphamab") for the worldwide exclusive rights.

Viral Diseases — Oral Direct-Acting Antivirals Against SARS-CoV-2

Marketed Product

R&D Pipeline

ASC₁₀

oral direct-acting antiviral drug candidate targeting RdRp

In vitro data showed significant activity against SARS-CoV-2. ASC10 is an in-house discovered drug candidate with the global intellectual property and commercial rights. Compared to RdRp-targeted Molnupiravir which was approved by US Food and Drug Administration (FDA), ASC10 has a new and differentiated chemical structure. Ascletis has filed patent applications for multiple compound and use. Animal studies demonstrated that ASC10 has higher bioavailability when compared to Molnupiravir. Ascletis plans to submit investigational drug applications (INDs) for clinical trials in China, USA etc. in the first half of 2022.

ASC11

oral direct-acting antiviral drug candidate targeting 3CLpro

In combination with the authorized ritonavir oral tablets manufactured by Ascletis, to treat SARS-CoV-2 infection. ASC11 is an in-house discovered drug candidate with the global intellectual property and commercial rights. Compared to 3CLpro-targeted Nirmatrelvir which was approved by US FDA, ASC11 has a new and differentiated chemical structure. Ascletis has filed patent application for the compound and use. Ascletis plans to submit INDs for clinical trials in China, USA etc. in the second half of 2022.

NASH/PBC Pipeline

Target	Candidate	Commercial rights	Pre- IND	IND	Phase I	Phase Ila	Phase IIb	Phase III	Competitiveness
FASN	ASC40 (NASH)	Greater China ¹		U.S.	FDA F	ast Trac	:k		 First-in-class, inhibit de novo lipogenesis US/CN phase II showed significant reduction of liver fat content, and minimal side effects compared to other NASH drug candidates
FXR	ASC42 (PBC)	Global							No pruritusCDE approval for Phase II/III clinical trials
THRβ	ASC41 (NASH)	Global							 Third-in-class globally, First-in-class in China Triglyceride reduction >30% with 1mg per day dosing No DDI with drugs commonly used by NASH patients
FXR	ASC42 (NASH)	Global	U.S. F	DA Fas	t Track				 Potential Best-in-class, no pruritus or LDC-c elevation Higher elevation of FGF-19, an FXR target engagement biomarker
THRβ + FXR	ASC43F FDC (NASH)	Global							• First-in-class, dual targets to THRβ and FXR
FASN + FXR	ASC44F FDC (NASH)	Global							First-in-class, dual targets to FASN and FXR
FASN+ THRβ	ASC45F FDC (NASH)	Global							• First-in-class, dual targets to THRβ and FASN

^{1.} ASC40 is licensed from Sagimet Biosciences Inc. for the exclusive rights in the Greater China.

Oral Cancer Metabolic Checkpoint and Immune Checkpoint Inhibitors

Target	Candidate	Indication	Commercial rights	Pre-IND	IND	Phase I	POC	Pivotal trial	Competitiveness
FASN + VEGF	ASC40 (Oral) +Bevacizumab	Recurrent glioblastoma	Greater China ¹		Phase I	II in China	approved		 FIC, inhibit energy supply and disturb membrane phospholipid composition of tumor cells by blocking de novo lipogenesis Significantly improved PFS in Phase II study
FASN	ASC40 (Oral)	Drug resistant Breast Cancer	Greater China ¹						FIC MOAPreliminary efficacy in phase I study
FASN	ASC40 (Oral)	KRAS mutant NSCLC	Greater China ¹						FIC MOAPreliminary efficacy in phase I study
PD-L1	ASC61 (Oral small molecule)	Multiple tumors	Global						 Oral small molecule, easier administration Comparable efficacy as FDA-approved PD-L1 antibody drugs in animal models
FASN	ASC60 (Oral)	Solid tumor 1	Greater China ¹						FICBetter <i>in vitro</i> activities compared to ASC40
FASN	ASC60 (Oral)	Solid tumor 2	Greater China ¹						 FIC Better <i>in vitro</i> activities compared to ASC40
PD-L1	ASC63 (Oral small molecule)	Multiple tumors	Global						 Oral small molecule, easier administration Stronger effects on PD-L1 dimerization and internalization compared to competitor PD-L1 small molecule inhibitor

^{1.} ASC40 and ASC60 are licensed from Sagimet for the exclusive rights in the Greater China.

Exploratory Indications

Acne

Target	Candidate	Commercial rights	Pre-IND	IND	Phase I	Phase II	Phase III	Competitiveness	
FASN	ASC40	Greater China ¹						 FIC Reduced sebum production in a dose- dependent manner in phase I study 	
IAON	A3040	Greater Crima							

^{1.} ASC40 is licensed from Sagimet Biosciences Inc. for the exclusive rights in the Greater China.

Anticipated Key Milestone(s) in next 12 months*

Viral Diseases

- ASC22/HBV—Progress on communication with Regulatory Authority for the pivotal Phase III trial
- ASC42/HBV--Top-line
 results from China phase II
 study
- ASC22/HIV—Initiation of China phase II study

NASH/PBC

- ASC40/NASH--Interim results from
 52w biopsy US phase IIb study
- ASC41/NASH--First patient dosed in 52w biopsy adaptive US phase
 IIa/IIb study
- ASC42/NASH--Submission for approval of 52w biopsy adaptive US phase IIa/IIb study
- ASC43F/NASH--Top-line results
 from US human PK study
- ASC42/PBC--Top-line results from
 China phase II study

Oncology

- ASC40/rGBM—Completion of
 80% patient enrollment of
 Phase III trial
- ASC40/Solid tumors—
 Initiation of phase II in a solid tumor
- ASC60/Solid tumors--Initiation
 of Phase I in solid tumors
- ASC61/multiple tumors—US and CN IND approvals for solid tumors

Exploratory Indications

 ASC40/Acne--Top-line results from China phase II study

Significant Market Potential

HBV (functional cure)

- 86 million hepatitis B virus carriers in China, and 1 million new cases reported every year; 1.59 million of people infected with HBV in the US.
- No functional cure could be achieved with current standard therapy (NAs).

NASH

- US: 80 million NAFLD, 18.6 million NASH patients;
- CN: 193 million NAFLD with NASH accounting for 20%-25% of NAFLD, which are 38-48 million NASH patients;
- Global: No approved drugs by FDA for NASH.

Primary biliary cholangitis

- Epidemiology study 2010: the prevalence of PBC in China was 49.2/100,000 persons and as high as 155.8/100,000 in women older than 40 years old, indicating a total of 656,000 PBC patients in China including 440,000 in females over age 40;
- UDCA is the only drug been approved in China with the effect of delaying disease progression; approximately 40% PBC patients have an inadequate response to UDCA or are unable to tolerate UDCA. *Ocaliva* has been approved in the US for patients who had an inadequate response or are unable to tolerate UDCA. However, *Ocaliva had significant side effects such as pruritus (63%) and fatigue (22%)*

11

Significant Market Potential

Recurrent Glioblastoma

- CN: gliomas has an incidence of 5-8/100,000 population per year, and GBM represents around 57% of gliomas thus has incidence rates of 2.85-4.56 per 100,000 population per year, suggesting approximately 40,000 to 64,000 new cases per yea;
- US: GBM represents 56.6% of gliomas and has an incidence rate of approximately 3.21 per 100,000 population;
- More than 90% glioblastoma patients will relapse after surgery, radiation and chemotherapies;
- Bevacizumab is the only drug approved for rGBM in China (PFS at 6 month is 16%, still need to be improved).

Acne

- Eighth most prevalent disease in the world and affects more than 640 million people globally;
- The onset of acne often coincides with pubertal hormonal changes, and affects approximately 85% of adolescents and young adults aged 12 to 25 years. However, acne can also persist into or develop during adulthood;
- The global acne medication market size was US\$11.86 billion in 2019, and is projected to reach US\$13.35 billion by 2027.

Viral Diseases

HBV Functional cure

HBV functional cure

6 months after treatment:

- Normal liver function
- Negative serum HBV DNA (<20 IU/ml)
- Negative serum HBsAg (<0.05 IU/ml)

86 million

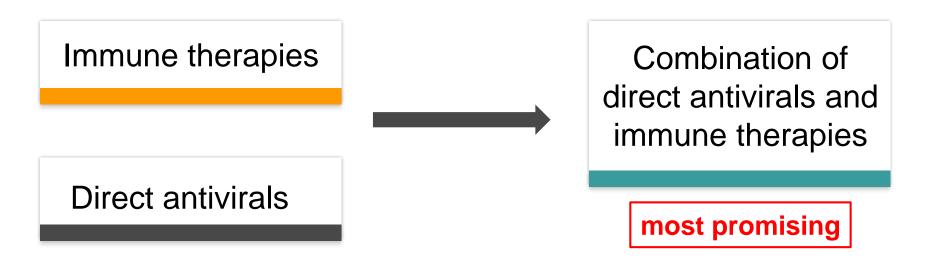
hepatitis B virus carriers in China

1 million

new cases reported every year in China

1.59 million

Persons infected with HBV


No functional cure could be achieved with current standard therapy (NAs).

HBV: Partial Cure vs Functional cure

Measure	Partial Cure	Functional cure
Serum HBV DNA	Negative	Negative
Serum HBsAg	Positive	Negative

Therapeutic approaches leading to functional cure

HBV (Functional Cure)

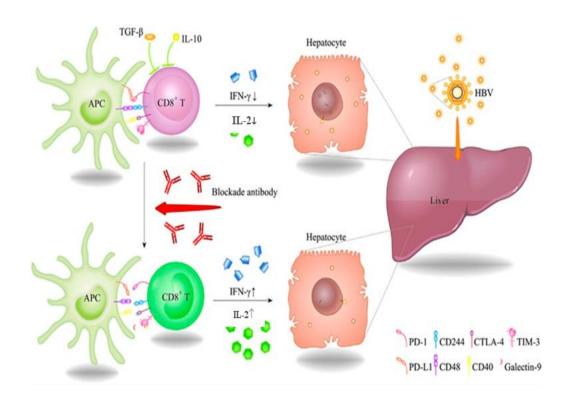
Target	Candidate	Commercial rights	Pre-IND	IND	Phase I	Phase Ila	Phase IIb	Phase III	Competitiveness
PD-L1	ASC22	Global ¹							 First-in-class candidate for HBV functional cure through blocking PD-1/PD-L1 pathway 19% of patients with baseline HBsAg ≤500 IU/mL obtained HBsAg loss and no rebound after the last dosing of ASC22 Improved compliance with subcutaneous injection
FXR	ASC42	Global							 First-in-class MOA Inhibit transcription from DNA to RNA Reduce stability of HBV cccDNA

^{1.} ASC22 is licensed from Suzhou Alphamab Co.,Ltd. ("Alphamab") for the worldwide exclusive rights .

Ascletis: Building HBV Franchise Leading to Functional Cure

- Cornerstones: Marketed Pegasys® and subcutaneously injected PD-L1 antibody ASC22
- Pegasys® in combination with in-house developed drug candidates against novel targets such as FXR
- PD-L1 antibody ASC22 in combination with in-house developed drug candidates against novel targets such as FXR
- Pegasys® or PD-L1 antibody ASC22 Partner with drug candidates of industrial leaders
 - > siRNA
 - Core Inhibitors
 - > HBV Entry Inhibitors
 - ➤ Therapeutic Vaccine

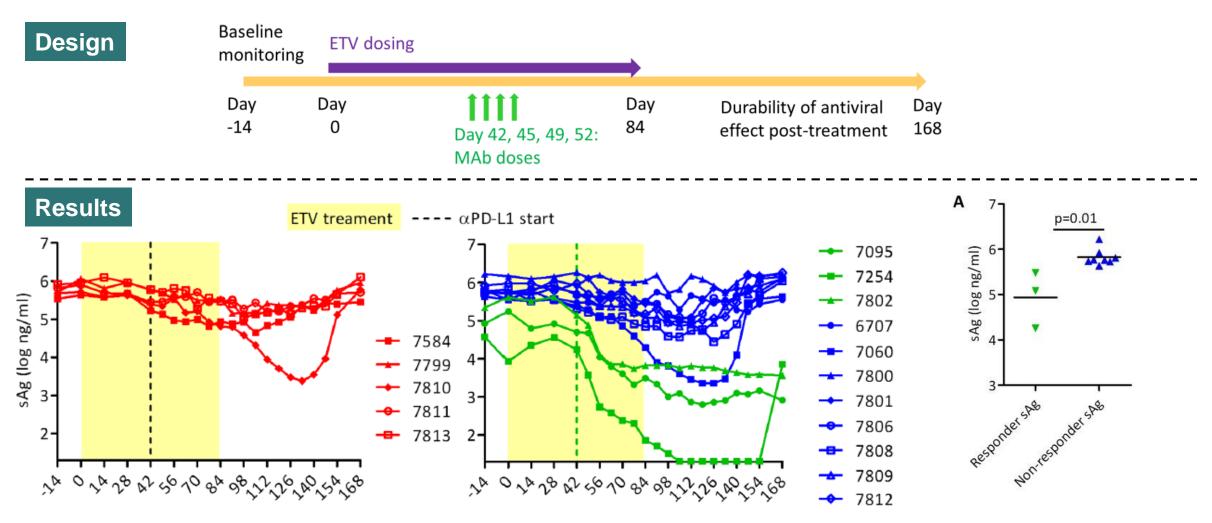
MOA of PD-L1 Antibody Against Chronic Hepatitis B


PD-1/PD-L1 interaction leads to T cell exhaustion

—— Persistent HBV infection

Blockade of PD-1/PD-L1 pathway restores T cell

function


—— Elimination of HBV

- ASC22 (KN035) can block the PD-1/PD-L1 pathway to restore T cell immune function and eliminate HBV.
- 1. Peng G, et al. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol. 2008;45(4):963-70.
- 2. B Ye, et al. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance. Cell Death Dis. 2015 Mar 19;6:e1694.

PD-L1 Antibody Study in Woodchuck HBV Model

Combination of αPD-L1 Ab with ETV led to the reduction of WHV sAg, especially in animals with a lower pre-treatment sAg level.

PD-1/PD-L1 Antibodies in Clinical Trials for HBV Functional Cure

Ascletis

- ASC22 (Envafolimab), a subcutaneously injected PD-L1 antibody
- Single dose escalation (0.3, 1.0 and 2.5 mg/kg) Phase IIa study is completed
- Multiple doses (1.0 and 2.5 mg/kg, Q2W for 24 weeks) Phase IIb study is ongoing. Interim report showed that 19% (3/16) of patients with baseline HBsAg ≤ 500 IU/mL obtained HBsAg loss and still no rebound occurred up to now after the last dosing of ASC22, indicating a potential HBV functional cure

■ Gilead

Ongoing Phase II study (PD-1 antibody Opdivo i.v. injection in combination with TLR8+siRNA+TAF)

Vaccitech

> Ongoing Phase I/II study (PD-1 antibody Opdivo i.v. injection in combination with therapeutic vaccine)

Henlix

Ongoing Phase II study of PD-1 antibody (HLX10) i.v. injection at 1 mg/kg, Q4W, up to 3 doses

Cure for HBV: First-in-class Subcutaneously Injected PD-L1 Ab

ASC22 (Envafolimab) is a protein fusion of a humanized single-domain PD-L1 antibody and human IgG1 Fc. ASC22 has potential to cure chronic Hepatitis B patients in combination with other therapies.

Global First-in-class

Blockade of PD-1/PD-L1 pathway to restore specific T-cell function

Demonstrated good safety profile

- Phase IIa study showed ASC22 is safe and well tolerated in chronic hepatitis B patients
- In addition to CHB patients, 1000+ cancer patients exposed in multiple clinical trials in US, China and Japan, including two pivotal trials in China

Differentiated Profile

- Subcutaneous route of administration
- · Good stability at room temperature

Immunotherapy for HBV

Only subcutaneously administered PD-1/PD-L1 antibody with a biologic license application (BLA) approval for oncology indications

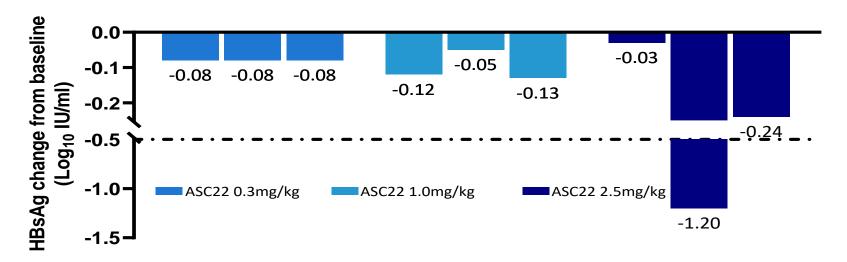
HBV Functional Cure: s.c. PD-L1 Ab ASC22 vs i.v. PD-L1 Abs

Company	Roche	MSD	AstraZeneca	Ascletis	
Product	Atezolizumab	Avelumab	Durvalumab	ASC22 (Envafolimab)	
Target	Target PD-L1		PD-L1	PD-L1	
Dose	Dose 1200 mg/3 weeks 80		10mg/kg/2 weeks	1-2.5mg/kg/2 week	
Administration	Administration I.V		I.V	S.C	
Indication	Late stage or metastasized Urothelial Carcinoma; Unresectable late stage NSCLC	Adult or Adolescent metastasized Merkel Cell Carcinoma; Late stage or metastasized Urothelial Carcinoma	Late stage or metastasized Urothelial Carcinoma; Unresectable late stage NSCLC	Hepatitis B	

- 1. ASC22 (Envafolimab) uses a lower dose, with advantage in administration route and storage condition.
- 2. ASC22 (Envafolimab) is the first PD-1/PD-L1 antibody with subcutaneous injection entering into late phase clinical trial.
- 3. Phase IIa data showed ASC22 (Envafolimab) is geneally safe and well tolerated in chronic hepatitis B (CHB) patients.
- ASC22 (Envafolimab) has been investigated in several oncology studies conducted in China, USA, and Japan involving more than 1000 subjects with proven safety.

ASC22 Phase IIa Chronic Hepatitis B Study Design

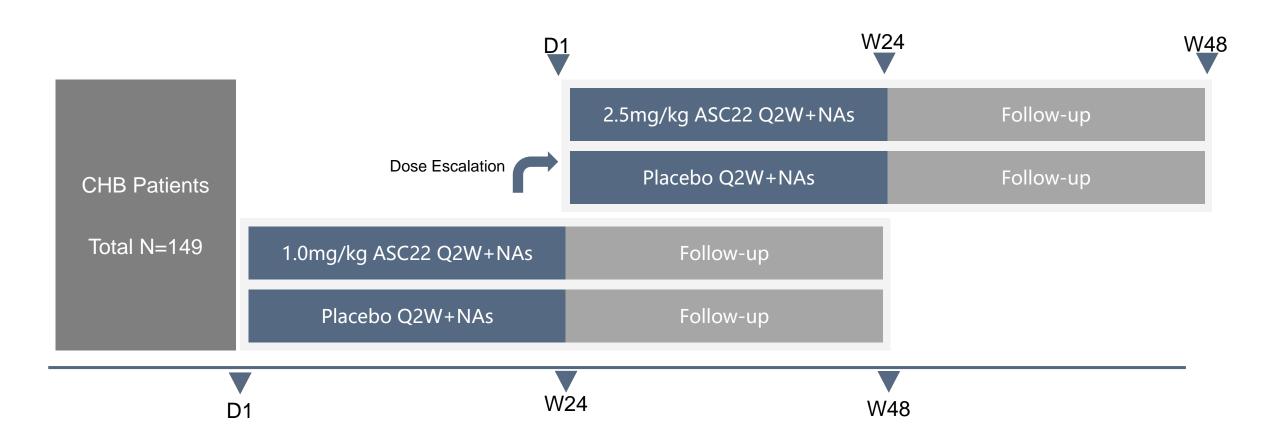
Efficacy and Safety Evaluation


12 week follow up Patients on NAs

Major inclusion criteria: HBsAg < 10,000 IU/mL, HBV DNA < 20 IU/mL and negative HBeAg

Positive Efficacy Data from ASC22 Phase IIa Single Dose Study

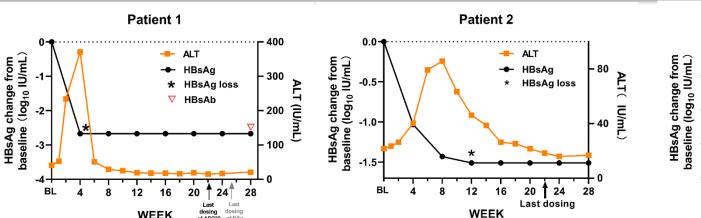
- Trend of dose dependent HBsAg reduction after a single dose administration of 0.3, 1.0 or 2.5 mg/kg ASC22 (Envafolimab).
- Among 3 patients receiving 2.5 mg/kg dose, 1 patient achieved a maximum HBsAg reduction of 1.2 log₁₀ IU/mL during the 12-week follow-up.

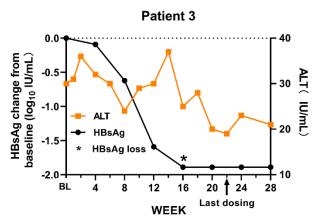


Good Safety Data from ASC22 Phase IIa Single Dose Study

- ASC22 (Envafolimab) is safe and well tolerated at all three dose levels with only Grade 1 adverse events (AEs).
- There were no Grade 2 or above AEs observed during 12-week follow-up.
- There were no serious AE and no AE led to discontinuation.
- Single dose administrations of ASC22(Envafolimab) up to 2.5 mg/kg would not affect alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (all below upper limit of normal) during 12-week follow-up.

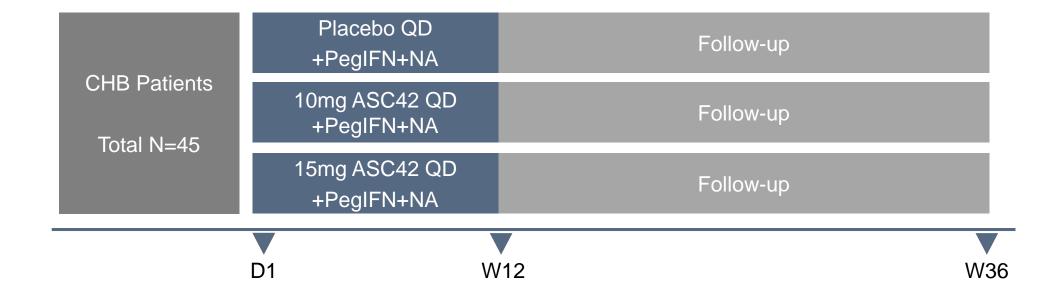
ASC22 Phase IIb Chronic Hepatitis B Study Design




Major inclusion criteria: HBsAg < 10,000 IU/mL, HBV DNA < 20 IU/mL and negative HBeAg

Positive Interim Results of PD-L1 Antibody ASC22 Phase IIb Study in Chronic Hepatitis B (149 Patients)

- HBsAg reduction was observed in the 1 mg/kg ASC22 once every two weeks plus nucleos(t)ide analogs group
 - Greater HBsAg reduction observed in patients with baseline HBsAg ≤ 500 IU/mL
 - > 19% (3/16) of patients with baseline HBsAg ≤ 500 IU/mL obtained HBsAg loss and no rebound occurred up to now after the last dosing of ASC22, indicating a potential HBV functional cure
 - > No HBsAg reduction was observed in patients receiving placebo plus nucleos(t)ide analogs
- Receptor occupancy one month after 1 or 2.5 mg/kg dosing are both predicted to be > 90%, suggesting ASC22 has the potential to be given once monthly
- Patients treated with 1 mg/kg ASC22 plus nucleos(t)ide analogs had comparable AE profiles as those treated with placebo plus nucleos(t)ide analogs



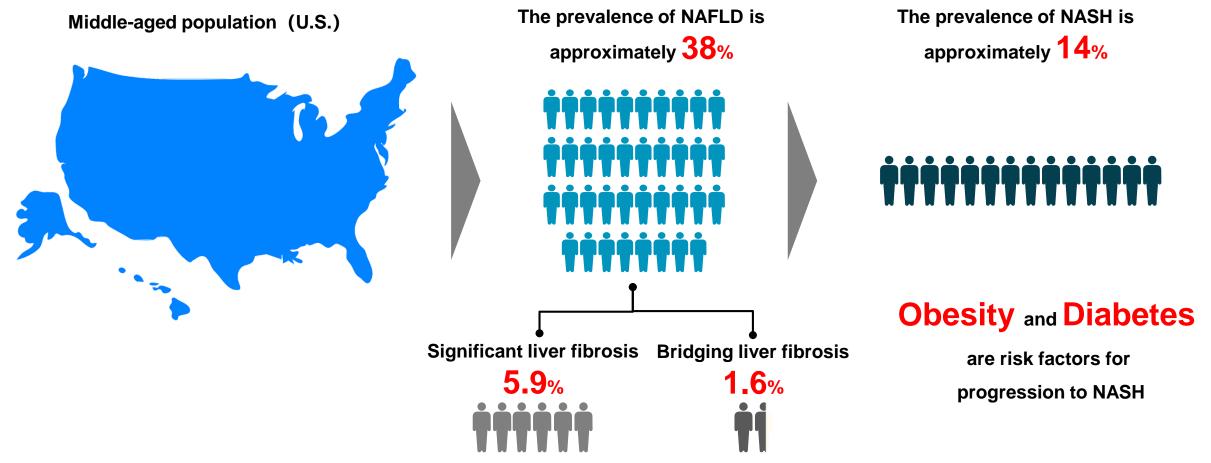
FXR agonist ASC42 has a unique mechanism of action against HBV

- ASC42 inhibits the transcription of HBV cccDNA into HBV RNA, which in turn inhibits the translation of HBV RNA into HBsAg
- ASC42 may also reduce HBV cccDNA stability.
- Both in vitro primary human hepatocyte (PHH) cells and in vivo AAV/HBV mouse studies demonstrated ASC42 significantly inhibited HBsAg and HBV pregenomic RNA (pgRNA)

ASC42: China Phase II Study Design

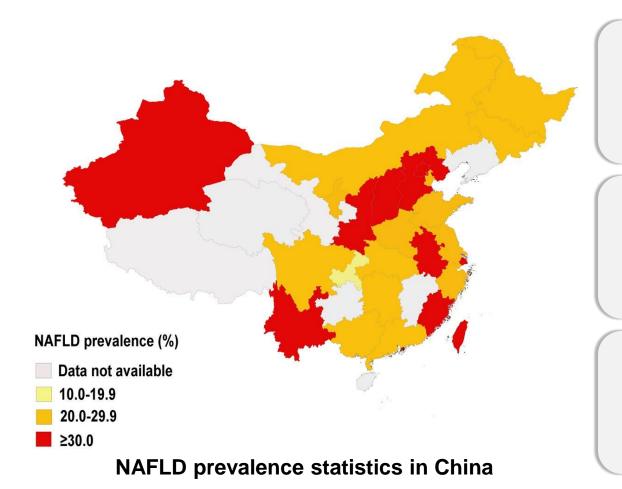
Non-alcoholic Steatohepatitis (NASH)/ Primary Biliary Cholangitis (PBC)

About Gannex


Gannex, a wholly-owned company of Ascletis, is dedicated to the R&D and commercialization of new drugs in the field of NASH. Gannex has three clinical stage drug candidates against three different targets – FASN, THRβ and FXR, and three fixed-dose combinations.

NAFLD and NASH Represent a Large and Growing Health Problem

■ A large prospective study evaluated the prevalence and severity of NAFLD/NASH in an asymptomatic middle-aged population attending outpatient colonoscopy in the United States.



NAFLD and NASH Represent a Large and Growing Health Problem

■ A large meta-analysis revealed that the prevalence of NAFLD in China was as high as 29.2% from various perspectives.

Highest NAFLD prevalence age group

Age 50~59 (32.9%; 95% CI, 30.3-35.5)

Prevalence of NAFLD in people with obesity

51.6%, 5 times higher than non-obese population (10.8%)

The prevalence of NAFLD in China is increasing rapidly

- 2008 ~ 2010 (25.4%) vs. 2015 ~ 2018 (32.3%)
- Twice as high as in Western countries, and already exceeds the average prevalence (29.2% vs. 25.2%)

Significant Unmet Medical Needs for the Treatment of PBC

China

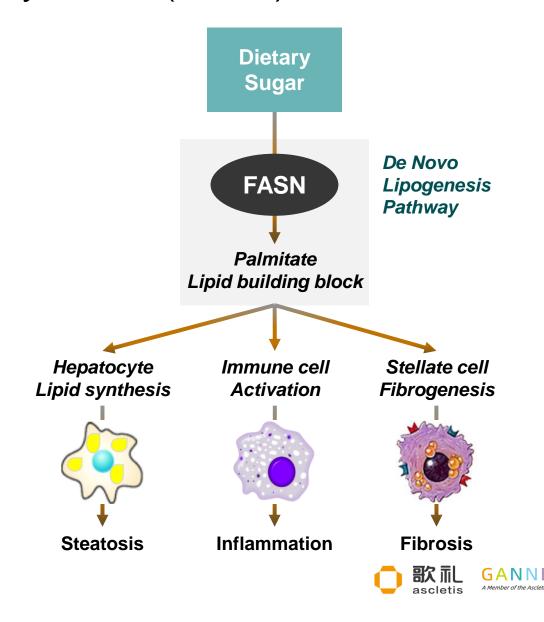
- The prevalence of PBC in China was 49.2 cases per 100,000 persons and as high as 155.8 cases per 100,000 in women older than 40 years old, indicating a total of 656,000 PBC patients in China, including 440,000 females over age 40.
- Ursodeoxycholic acid (UDCA) is the only drug approved in China for PBC to delay disease progression. However, approximately 40% PBC patients have inadequate responses to UDCA or have drug intolerance.

US/EU

- 120,000 PBC patients in the US in 2014.
- Obeticholic acid (Ocaliva) has been approved by US FDA for treatment of PBC in combination with UDCA in patients with inadequate responses to UDCA, or as monotherapy in patients with drug intolerance to UDCA.
- Ocaliva has significant side effects, including pruritus (63%) and fatigue (22%).

NASH/PBC Pipeline

Target	Candidate	Commercial rights	Pre- IND	IND	Phase I	Phase Ila	Phase IIb	Phase III	Competitiveness
FASN	ASC40 (NASH)	Greater China ¹		U.S.	FDA Fa	nst Trad	e k		 First-in-class, inhibit de novo lipogenesis US/CN phase II showed significant reduction of liver fat content, and minimal side effects compared to other NASH candidates
FXR	ASC42 (PBC)	Global							No pruritusCDE approval for Phase II/III clinical trials
THRβ	ASC41 (NASH)	Global							 Third-in-class globally, First-in-class in China Triglyceride reduction >30% with 1mg per day dosing No DDI with drugs commonly used by NASH patients
FXR	ASC42 (NASH)	Global	U.S. F	DA Fas	t Track				 Potential Best-in-class, no pruritus or LDC-c elevation Higher elevation of FGF-19, an FXR target engagement biomarker
THRβ + FXR	ASC43F FDC (NASH)	Global							• First-in-class, dual targets to THRβ and FXR
FASN + FXR	ASC44F FDC (NASH)	Global							First-in-class, dual targets to FASN and FXR
FASN+ THRβ	ASC45F FDC (NASH)	Global							• First-in-class, dual targets to THRβ and FASN

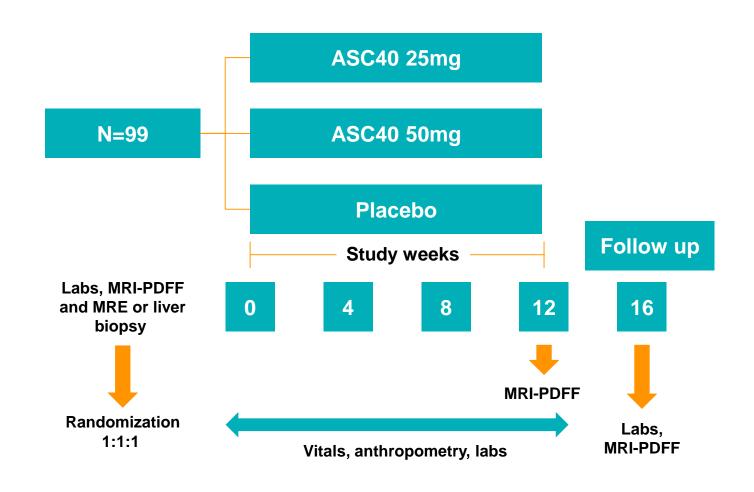


ASC40: First-in-Class Oral Fatty Acid Synthase (FASN) Inhibitor

FASN is an important rate-limiting step in intrahepatic fatty acid synthesis as well as De novo lipogenesis (DNL)

- Reduces steatosis by blocking DNL
- Reduces inflammation by decreasing cytokine secretion and Th17 differentiation
- Blunts fibrosis by reducing procollagen and profibrotic gene expression

Phase II U.S. Cohort: ASC40 Clinical Trial Design in NASH Patients

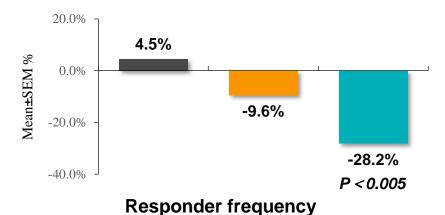

■ Multicenter, randomized, placebo-controlled trial 1:1:1 25mg:50mg:placebo (N=99)

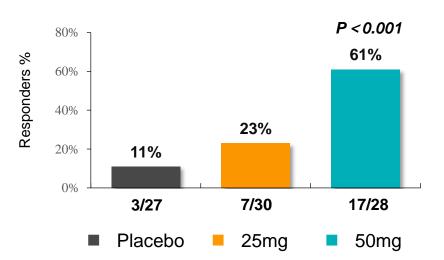
Criteria

- Inclusion
 - ≥ 8% liver fat
 - MRE ≥ 2.5kPa or recent biopsy
- Exclusion
 - Evidence of cirrhosis
 - Other chronic liver disease

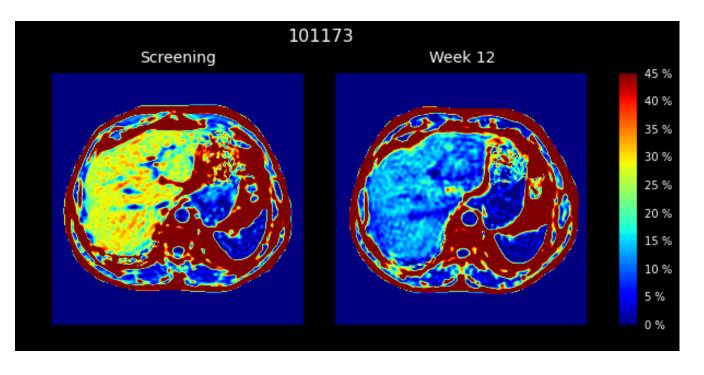
Endpoints

- Primary
 - Liver fat reduction by MRI-PDFF
 - Safety
- Secondary
 - % pts ≥30% reduction of liver fat
 - ALT, AST
 - Biomarkers



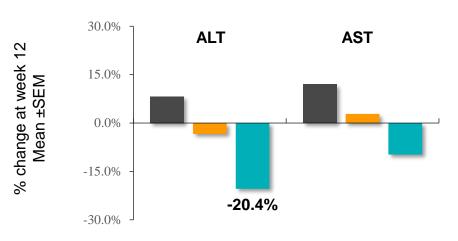

Phase II U.S. Cohort: ASC40 Significantly Reduces Liver Fat Content

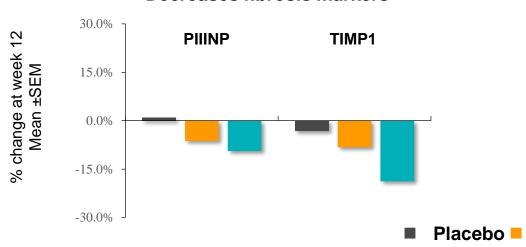
Mean relative liver fat reduction


MRI-PDFF at week 12

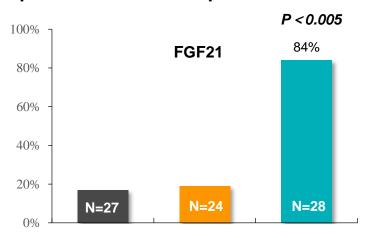
Patients with ≥30% relative reduction

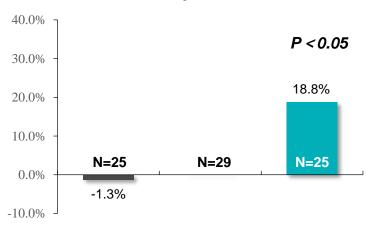
Significant reduction in liver fat content over 12 weeks of treatment


MRI-PDFF responders were defined as those with ≥ 30% MRI-PDFF decline relative to baseline



Phase II U.S. Cohort: ASC40 Significantly Improves NASH-related Metrics


Dose-dependent response in reducing ALT/AST


Decreases fibrosis markers

Improves markers of hepatic insulin sensitivity

Adiponectin

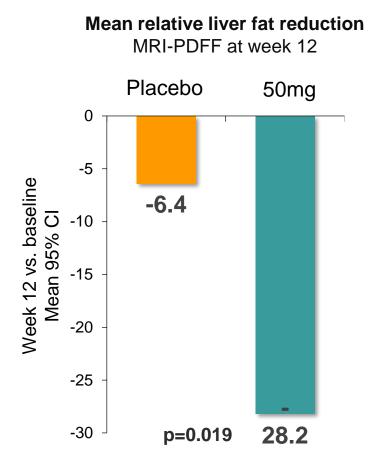
25mg

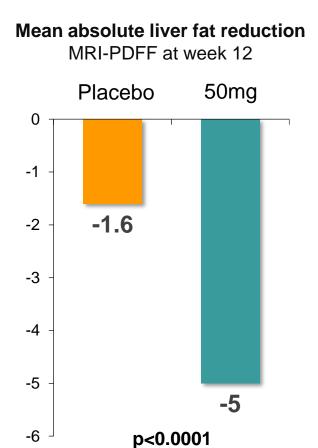
50mg

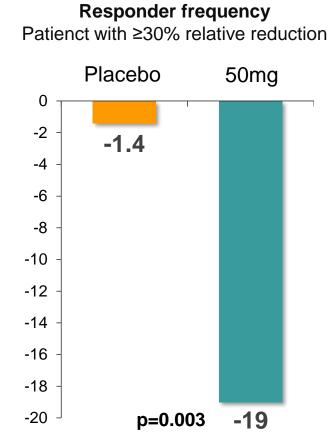
Phase II ASC40 Compares Favorably With Other Phase II/III NASH Drugs

Drug Candidate	Company	Target	Dose Weeks ≥ 30% liver fareduction response rate, %		esponder	Placebo adjusted ≥ 30% liver fat reduction responder	Safety		
					Drug	Placebo	rate, %		
ASC40 ¹	Gannex /Sagimet	FASN	50 mg	12	60.7	11.1	49.6	minimal side effects	
Firsocostat ²	Gilead	ACC	20mg	12	47.8	15.4	32.4	TG ↑	
Tropiflexor ³	Novartis	FXR	200µg	12	64	20	44	LDL-C ↑, pruritus	
Resmetirom ⁴	Madrigal	THRβ	80mg	36	74.4	29.4	45	diarrhea, nausea	

Non-head to head research

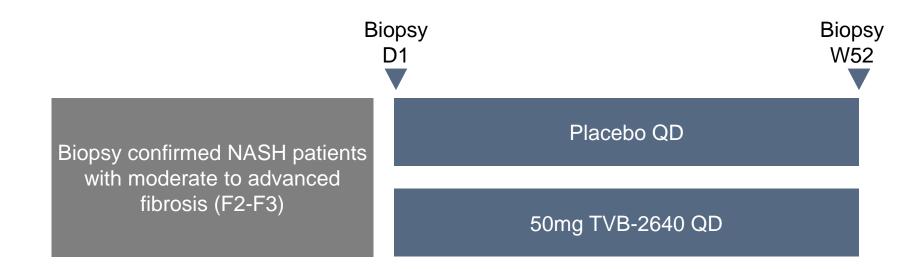

^{1、}Rohit Loomba et al. 2020, Hepatology 72;103. EASL 2020 Oral Presentation


^{3、} Marcos Pedrosa et al. Contemp Clin Trials. 2020 Jan;88:105889.


^{2、}Eric J Lawitz et al. Clin Gastroenterol Hepatol. 2018 Dec;16(12):1983-1991

^{4、}Stephen A Harrison et al. Lancet. 2019 Nov 30;394(10213):2012-2024

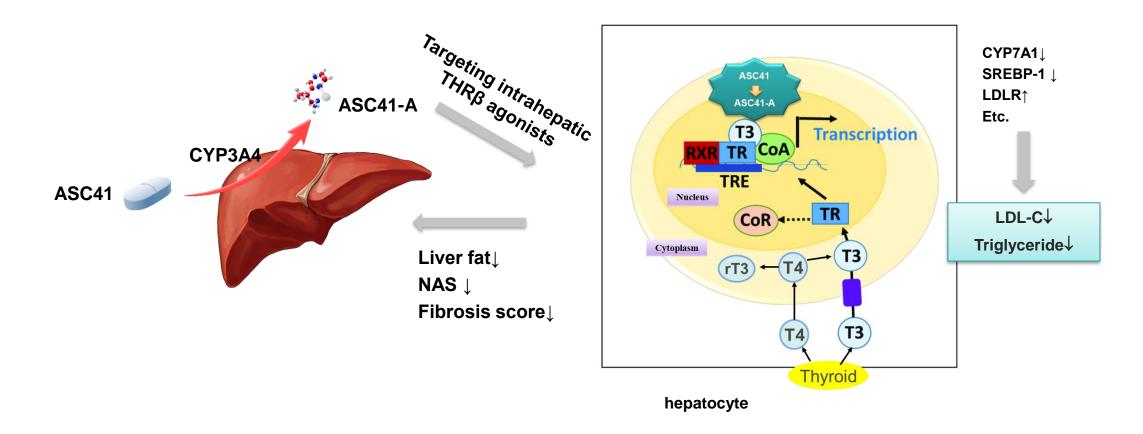
Phase II Combined U.S. & China Cohorts: ASC40 Reduces Liver Fat



Source: NOVEL, FIRST-IN-CLASS, FATTY ACID SYNTHASE (FASN) INHIBITOR TVB-2640 DEMONSTRATES ROBUST CLINICAL EFFICACY AND SAFETY IN A GLOBAL PHASE 2 RANDOMIZED PLACEBO-CONTROLLED NASH TRIAL (FASCINATE-1) CONDUCTED IN THE US AND CHINA 72th American Association for the Study of Liver Diseases (AASLD)& The Liver Meeting ®, November 12-15, 2021. Virtual Conference.

ASC40 (TVB2640): US Phase IIb Study Design in NASH

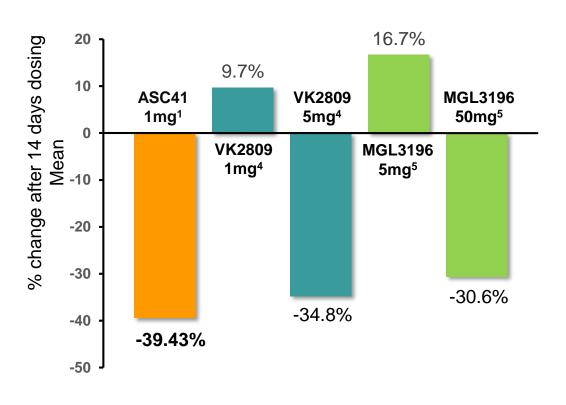
Primary efficacy endpoints:


- ≥ 2-point improvement in NAS (Nonalcoholic fatty liver disease (NAFLD) Activity
 Score) that results from reduction of necro-inflammation (inflammation or ballooning),
 or
- 2. improvement in fibrosis.

ASC41: A Liver Targeting Thyroid Hormone Receptor Beta (THRβ) Agonist

■ ASC41 is a liver targeted small molecule which is converted to its active metabolite ASC41-A - a potent and selective THRβ agonist

ASC41: Third-in-class THR\$\beta\$ Agonist in USA First-in-class THRB Agonist in China

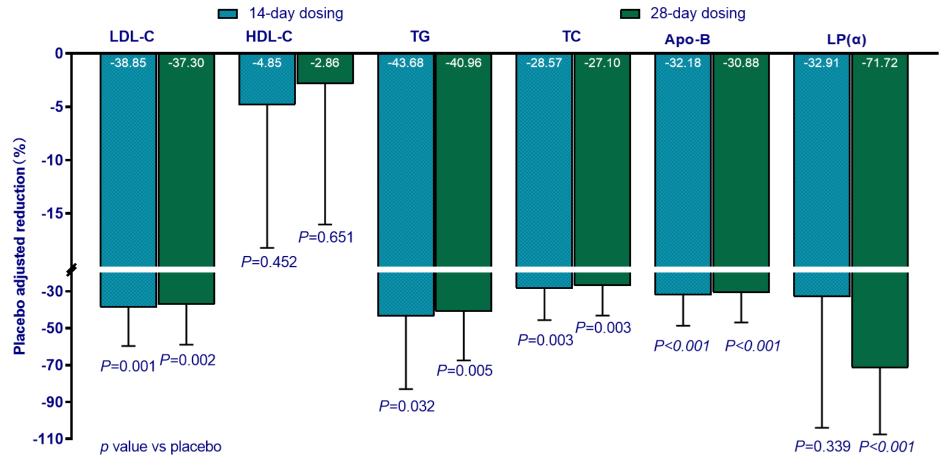

- In two NASH animal models, at 1/10 dose of MGL-3196, ASC41 demonstrated the same improvement of liver steatosis, inflammation and fibrosis.
- Commercially ready oral tablet formulation developed with in-house proprietary technology
- 2 Phase I studies completed
 - Single doses (1, 2, 5, 10, 20 mg) and 14 day multiple doses (1, 2, 5 mg) in 65 subjects with elevated LDL-C > 110 mg/dL
 - > Food effect in 12 healthy subjects
- 1 Phase Ib study completed
 - 28 day, 10 mg in 20 overweight and obese subjects with elevated LDL-C > 110 mg/dL
- US Phase I study showed no significant drug-drug interactions between ASC41/ASC41-A and common used drugs in NASH patients such as antidepressants and statins
- Based on above studies, doses have been selected for Phase II trials in patients with NASH

THRβ Differentiations: Gannex vs Viking and Madrigal

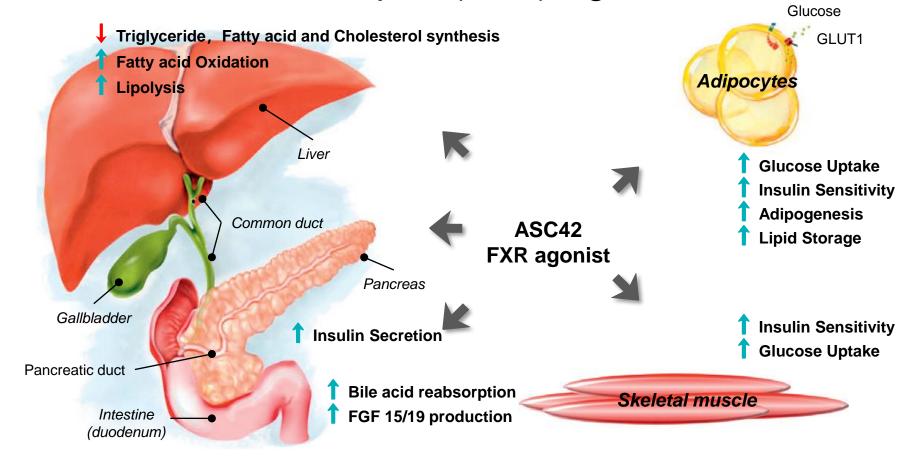
	Gannex ASC41 ¹	Viking VK2809 ²	Madrigal MGL3196 ³
Oral formulation	Tablet, room temp storage, commercially ready	Capsule, refrigerated	Tablet, room temp storage, commercially ready
Dosing frequency	Once a day	Once every two days	Once a day
DDI	-	+	-
Human dose needed for > 30% TG reduction	1 mg	2.5 mg	50 mg

targeted thyroid hormone receptor-b agonist. Atherosclerosis 230 (2013) 373e380

Placebo adjusted triglyceride reduction from baseline after 14 day dosing


^{1.}EASL 2021 Abstract No. PO-1851 2.EASL2020 Abstract No. AS073. 3.Stephen A Harrison et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. www.thelancet.com Published online November 11, 2019 https://doi.org/10.1016/S0140-6736(19)32517-6 4 VK2809 data presented at the 2016 Meeting of the American College of Cardiology 5 Taub et al. Lipid lowering in healthy volunteers treated with multiple doses of MGL-3196, a liver-

Positive Clinical Results in Overweight and Obese Subjects


Placebo-adjusted relative change (mean) from baseline after 14 or 28 days of once daily oral dosing of 10 mg ASC41 tablets in overweight and obese subjects

ASC42: A Farnesoid X Receptor (FXR) Agonist

- ASC42 increases insulin sensitivity of adipocytes and skeletal muscle cells, increases glucose uptake in peripheral tissues and increases energy consumption.
- ASC42 reduces the synthesis of triglycerides, fatty acids and cholesterol in the liver, and promotes liver fat decomposition and fatty acid oxidation.

ASC42: A Novel Non-steroidal, Selective, Potent FXR Agonist

- Potentially best-in-class, no pruritus at human therapeutic doses
- U.S. FDA IND approval in Oct 2020
- U.S. FDA Fast Track Designation in Dec 2020
- U.S. Phase I trials completed
 - Single ascending doses and multiple ascending doses
 - Food effect
- Phase II/III clinical trials for PBC approved in Nov 2021 by China NMPA
- Oral tablet formulation developed with in-house proprietary technology and stable at room temperature

ASC42: Topline Results of the U.S. Phase I Trial

Dose (QD)	5mg	15mg
Incidence rate of pruritus during 14 days treatment (%)	0	0
LDL-C change from baseline on Day 14 (%, Median)	-6.6	2.43
FGF19 on Day 14 versus baseline (%)	471	1780
C4 reduction on Day 14 (%)	53	91
ALT change from baseline on Day 14 (U/L, Median)	-1.0	-2.5

FDC: Complementary among ASC40, ASC41 and ASC42

		Monotherapy		FDC One-Pill, Once-a-Day			
Treatment Goals	ASC40 FASN	ASC41 THRβ	ASC42 FXR	ASC43F THRβ + FXR	ASC44F FASN + FXR	ASC45F FASN + THRβ	
Liver fat reduction	***	***	**	***	***	***	
Anti-inflammation	**	**	**	**	**	**	
Anti-fibrosis	**	**	***	***	***	**	
Lowering LDL-C and TG		***		***		***	

ASC43F- First-in-Class Dual Targeting (THRβ +FXR) Fixed-dose Combination

- An in-house developed, first-in-class dual targeting fixed-dose combination (FDC) of 5mg
 ASC41 (a THRβ agonist) and 15mg ASC42 (an FXR agonist)
- THRβ agonists have shown primarily anti-metabolic effects, while FXR agonists have shown primarily anti-fibrotic, as well as anti-inflammatory effects. The combination of ASC41 and ASC42 may complement the advantages of these two agents
- U.S. FDA IND approval in November 2021
- U.S. Phase I trial completed in January 2022
 - ➤ ASC43F was safe and well tolerated in healthy volunteers
 - > PK parameters of ASC41 and ASC42 from ASC43F are similar to those of ASC41 and ASC42 monotherapy

Oncology

Cancer Molecular Therapies

Category	Mechanism	Examples of Approved drugs
Signal Transduction	Angiogenesis and proliferation inhibitor	Bevacizumab, Imatinib, Erlotinib, Sorafenib, Ibrutinib, Tofacitinib, Palbociclib
Immunotherapy	Checkpoint inhibitor	Keytruda [®] , Opdivo [®] , Tecentriq [®] , Bavencio [®] , Imfinz [®]
Metabolism	Control aberrant energy and substance needs, inhibit toxic metabolites	Ivosidenib, Enasidenib

Oral Cancer Metabolic Checkpoint and Immune Checkpoint Inhibitors

Target	Candidate	Indication	Commercial rights	Pre-IND	IND	Phase I	POC	Pivotal trial	Competitiveness
FASN + VEGF	ASC40 (Oral) +Bevacizumab	Recurrent glioblastoma	Greater China ¹		Phase I	II in China	approved		 FIC, inhibit energy supply and disturb membrane phospholipid composition of tumor cells by blocking de novo lipogenesis Significantly improve PFS in Phase II study
FASN	ASC40 (Oral)	Drug resistant Breast Cancer	Greater China ¹						FIC MOAPreliminary efficacy in phase I study
FASN	ASC40 (Oral)	KRAS mutant NSCLC	Greater China ¹						FIC MOAPreliminary efficacy in phase I study
PD-L1	ASC61 (Oral small molecule)	Multiple tumors	Global						 Oral small molecule, easier administration Comparable efficacy as FDA approved PD- 1/PD-L1 antibody drug in animal models
FASN	ASC60 (Oral)	Solid tumor 1	Greater China ¹						 FIC Better <i>in vitro</i> activities compared to ASC40
FASN	ASC60 (Oral)	Solid tumor 2	Greater China ¹						FICBetter <i>in vitro</i> activities compared to ASC40
PD-L1	ASC63 (Oral small molecule)	Multiple tumors	Global						 Oral small molecule, easier administration Stronger effects on PD-L1 dimerization and internalization compared to competitor compound

^{1.} ASC40 and ASC60 are licensed from Sagimet for the exclusive rights in the Greater China.

Cancer Lipid Metabolism

Cancer Metabolism: Long History, Recent Breakthrough

Warburg Effect (~1921)

Increased glucose uptake and fermentation of glucose to lactate even in the presence of completely functioning mitochondria

Enasidenib Approved for AML (2017)

FDA approves first-in-class cancer metabolism drug

The FDA <u>approved Agios' and Celgene's enasidenib</u> for acute myeloid leukaemia (AML), validating metabolism-modulating drugs as a means of killing cancer cells.

Enasidenib (formerly AG-221) is a first-in-class inhibitor of mutated isocitrate dehydrogenase 2 (IDH2). The IDH enzymes normally metabolize isocitrate into α -ketoglutarate. When they are mutated in cancers, they also convert α -ketoglutarate into 2-hydroxyglutarate, an oncometabolite that causes cell differentiation defects by impairing histone demethylation.

In clinical trials of enasidenib, 23% of treated patients had complete responses or complete responses with partial haematologic recovery lasting a median of 8.2 months. The most common side effects were nausea, vomiting, diarrhoea, elevated bilirubin and decreased appetite. The agency approved the drug with a black box warning noting the risk of differentiation syndrome, a potentially fatal complication that is associated with certain forms of AML.

Nature Reviews Drug Discovery, 2017, 16, 593

RESEARCH 10.1126/science.aaw5473

Science 2020

CANCER

Metabolic reprogramming and cancer progression

www.nature.com/bjc

EDITORIAL

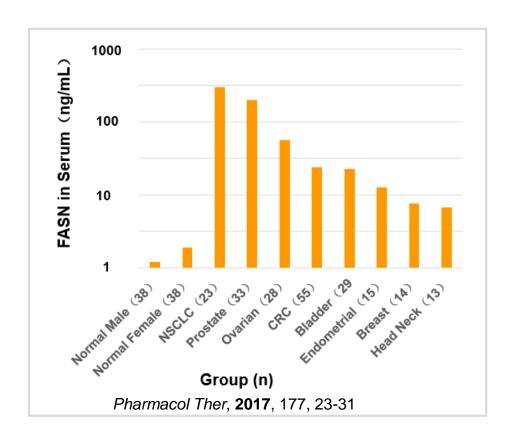
Cancer Metabolism

Development of cancer metabolism as a therapeutic target: new pathways, patient studies, stratification and combination therapy

Cancer metabolism has undergone a resurgence in the last decade, 70 years after Warburg described aerobic glycolysis as a feature of cancer cells. A wide range of techniques have elucidated the complexity and heterogeneity in preclinical models and clinical studies. What emerges are the large differences between tissues, tumour types and intratumour heterogeneity. However, synergies with inhibition of metabolic pathways have been found for many drugs and therapeutic approaches, and a critical role of window studies and translational trial design is key to success.

British Journal of Cancer (2020) 122:1-3; https://doi.org/10.1038/s41416-019-0666-4

Cancer Metabolism: Approved Drugs and Clinical Stage Candidates


Drug	Target	Indication	Development phase and Company
Ivosidenib (AG-120)	Mutant IDH1 TCA cycle metabolism	AML with IDH1 Mutation	Approved Agios Pharmaceuticals/Celgene
Enasidenib (AG-221)	Mutant IDH2 TCA cycle metabolism	AML with IDH2 Mutation	Approved Agios Pharmaceuticals/Celgene
Vorasidenib (AG-881)	Mutant IDH1/2 TCA cycle metabolism	Low grade glioma	Phase III Agios Pharmaceuticals
Devimistat (CPI-613)	Pyruvate dehydrogenase/α- ketoglutarate dehydrogenase TCA cycle metabolism	Lymphoma, Leukemia, Pancreatic cancer	Phase II / Pivotal Rafael Pharmaceuticals
INCB001158	Arginase inhibitor Maintains arginine levels	Relapsed or Refractory multiple myeloma	Phase II Incyte Corporation
AZD3965	Monocarboxylate transporter 1 Lactate metabolism	Advanced cancer	Phase I Cancer Research UK
ASC40(TVB-2640)	Fatty acid synthase Lipid metabolism	GBM, Breast cancer and other solid tumors	Phase III Ascletis (Greater China)/Sagimet Biosciences (outside Greater China)

Fatty Acid Synthase, A Promising Cancer Drug Target

Fatty Acid Synthase (FASN):

- Synthesis palmitic acid from acetyl-CoA and malonyl-CoA
- Discovered as Oncogenic Antigen 519 (OA-519) in 1990's
- Over expressed in many cancer, prognosis marker

Cell Metabolism
Review

Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer

Marteinn Thor Snaebjornsson, 1,2,* Sudha Janaki-Raman, 1,* and Almut Schulze 1,2,*

¹Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany
²Division of Tumor Metabolism and Microenvironment, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany

*Correspondence: m.snaebjoernsson@dkfz-heidelberg.de (M.T.S.), sudha.janaki_raman@uni-wuerzburg.de (S.J.-R.), almut.schulze@dkfz-heidelberg.de (A.S.)

https://doi.org/10.1016/j.cmet.2019.11.010

Altered lipid metabolism is among the most prominent metabolic alterations in cancer. Enhanced synthesis or uptake of lipids contributes to rapid cancer cell growth and tumor formation. Lipids are a highly complex group of biomolecules that not only constitute the structural basis of biological membranes but also function as signaling molecules and an energy source. Here, we summarize recent evidence implicating altered lipid metabolism in different aspects of the cancer phenotype and discuss potential strategies by which targeting lipid metabolism could provide a therapeutic window for cancer treatment.

Glioblastoma

- In China, gliomas has incidence rates of 5-8 per100,000 population per year, and GBM represents around 57% of gliomas thus has incidences of 2.85-4.56 per 100,000 population per year, suggesting approximately 40,000 to 64,000 new cases of GBM per year.
- In the United States, GBM represents 56.6% of gliomas and has an incidence rate of approximately 3.21 per 100,000 population per year.
- More than 90% glioblastoma patients will relapse after surgery, radiation and chemotherapies.

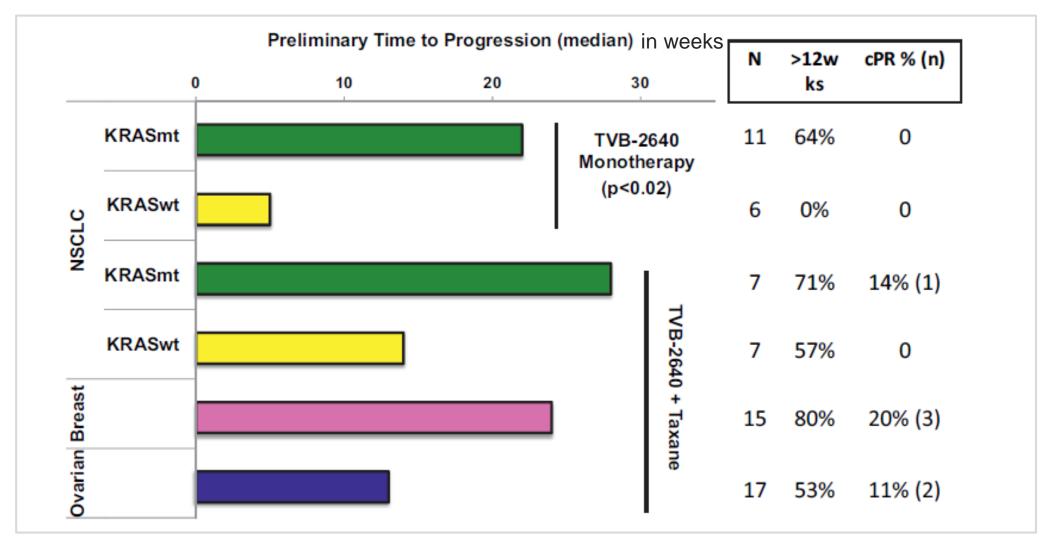
Cancer Lipid Metabolism: Recent Breakthrough of FASN Inhibitors in rGBM

- Investigator sponsored Phase II trial of TVB-2640 with Bevacizumab in patients with first relapse of high-grade astrocytoma (recurrent glioblastoma)
 - 25 patients enrolled
 - All patients received ASC40 (TVB-2640) (100mg/m² PO QD) plus Bevacizumab (10mg/kg IV D1,15) until treatment-related toxicity or progressive disease
- The objective response rate (ORR) for ASC40 (TVB-2640) plus Bevacizumab of 65%
 - ➤ Complete response (CR) of 20%
 - Partial response (PR) of 45%
- Progression-free survival at six months for ASC40 (TVB-2640) plus Bevacizumab was 47%
 - Representing a statistically significant improvement in PFS over the historical Bevacizumab monotherapy PFS of 16% (BELOB Trial) (*P*=0.01)
 - > ASC40 (TVB-2640) in combination with Bevacizumab was safe and well tolerated in such patient population
- Presented at European Society for Medical Oncology 2020

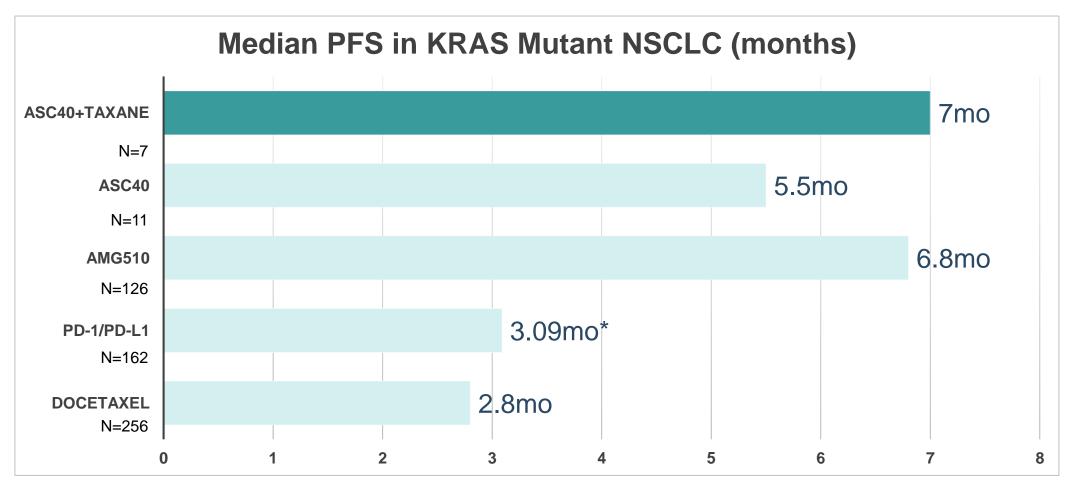
China NMPA Approved Phase III Clinical Trial of ASC40 in Combination with Bevacizumab for Treatment of Patients with Recurrent Glioblastoma

- First Phase III trial of ASC40, a first-in-class drug candidate targeting tumor lipid metabolism
- Bevacizumab is the only drug which has been approved for rGMB indication in China as of September, 2020.
- The data of BELOB Trial indicated that median PFS was three months for patients with rGBM after Bevacizumab treatment.

ASC40: China Phase III Study Design in Recurrent Glioblastoma


■ A Randomized, Double Blind, Placebo Controlled, Multi-center Phase III Trial of ASC40 in Combination with Bevacizumab for treatment of Patients with Recurrent Glioblastoma

Primary endpoints: PFS and OS



Phase I: Median time to progression of TVB-2640 alone and with a Taxane in patients with KRAS^{MUT} versus KRAS^{WT} non-small cell lung, breast, and ovarian cancer

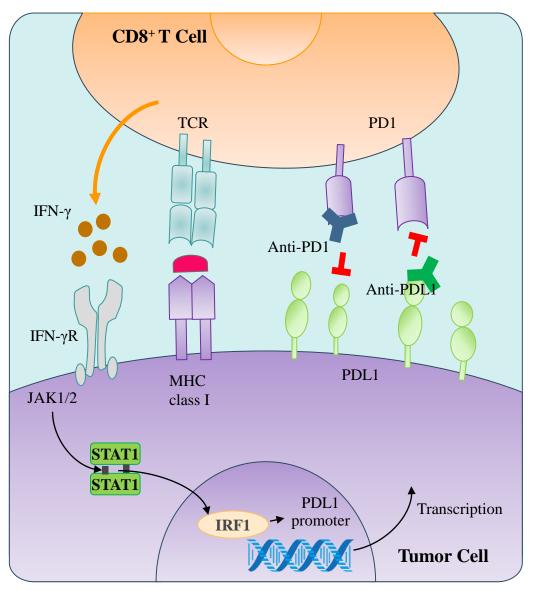
ASC40 Shows Competitive Efficacy in KRAS Mutant NSCLC

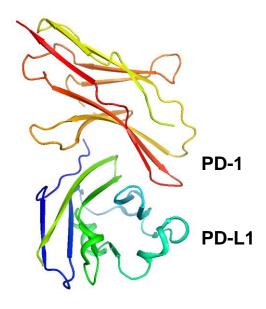
^{*:} represents mean PFS (range 2.36-3.82 months) instead of median PFS

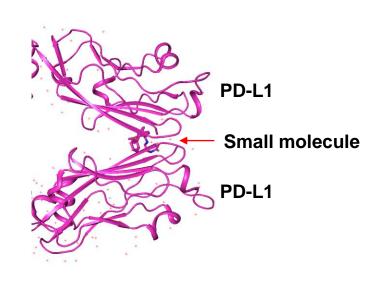
Other Clinical Trials of ASC40 (TVB-2640)

- Patients with KRAS mutatant non-small cell lung cancer (ClinicalTrials.gov Identifier: NCT03808558)
- Patients with breast cancer (ClinicalTrials.gov Identifier: NCT03179904)
- Patients with colon cancer/head and neck cancer (ClinicalTrials.gov Identifier: NCT02980029)

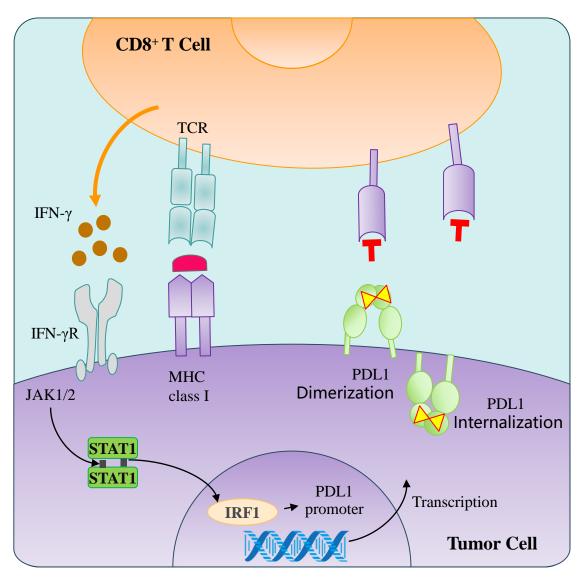
Oral Immune Checkpoint Inhibitors

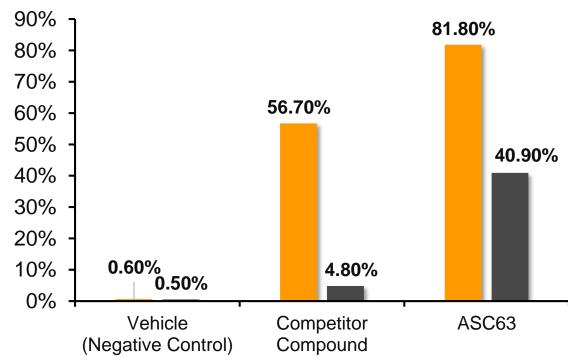



Immunotherapies: Great Success for mAb, It is Time for Oral Drugs

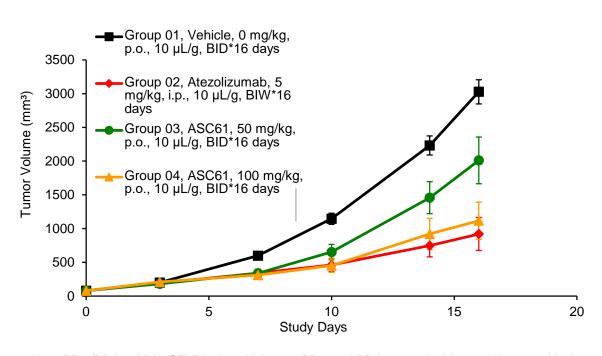

- BMS is the first company working on oral PD-L1 inhibitors
 - Filed patents for oral PD-L1 small molecule inhibitors in 2013
 - BMS stopped working PD-L1 inhibitors later due to drugability issues etc.
- Gilead is one of leaders in oral PD-L1 inhibitors
 - > A few years ago, Gilead announced its oral PD-L1 inhibitors for HBV
 - At JP Morgan virtual conference in 2021, Gilead announced its oral PD-L1 inhibitor GS-4224 was in Phase I for NSCLC
- Incyte is another leader in oral PD-L1 inhibitors
 - At SITC 2021, Incyte unveiled the preliminary results of the Phase I study of its oral small-molecule inhibitor,INCB86550, which showed promising pharmacodynamic. All fatal TEAEs were considered unrelated to study drug. Preliminary efficacy of INCB086550 is encouraging and a Phase II study has been launched

PD-L1 Small Molecule Inhibitors: Challenges and Opportunities




- Antibodies block PD-1/PD-L1 interface
- Traditional small molecules not good at inhibiting protein-protein interaction
- PD-L1 small molecule inhibitors induce PD-L1 dimerization and internalization, preventing PD-1/PD-L1 interaction

ASC63: Induce PD-L1 Dimerization and Sustained Internalization



Ascletis' ASC63

- Potently induce PD-L1 dimerization and internalization (orange)
- Induce long-lasting PD-L1 signal loss from cell surface (after compound removed from medium for 16 hours, still resulted in 40% PD-L1 signal loss) (black)

ASC61 showed comparable antitumor activities as the FDA- approved PD-L1 antibody, Atezolizumab, in mouse tumor models

Note: PD-1/PD-L1 dKI HuGEMM mice with human PD-1 and PD-L1 gene double knock-in are an ideal model for testing human-specific PD-1/PD-L1 immune checkpoint inhibitor drugs.

Description	Tumor Size (mm³) ^a on day 16	T/C (%) on day 16 ^b	TGI (%) on day 16	p value compare with G1°	p value compare with G2 ^d
Vehicle, p.o., 10 µL/g, p.o., BID*3 weeks	3027.54±179.16	-	-	-	-
Atezolizumab, 5 mg/kg, i.p., BIW*3 weeks	919.73±244.00	30.38	69.62	<0.001	-
ASC61, 50 mg/kg, p.o., BID*3 weeks	2009.72±346.48	66.38	33.62	0.0954	0.0362
ASC61, 100 mg/kg, p.o., BID*3 weeks	1115.61±275.17	36.85	63.15	<0.001	0.954

Note: a. Mean ± SEM; b. tumor volume treatment/control; c. compared with group 1 tumor volume on day 16 using Tukey's HSD test; d. compared with group 2 tumor volume on day 16 using Tukey's HSD test.

- Oral administration of ASC61 resulted in significant tumor growth inhibitions in mouse tumor models. Antitumor activity of ASC61 was shown to be dose-dependent.
- No significant difference of body weight was observed among all groups during studies, indicating that ASC61 was generally well-tolerated in mice.

Exploratory Indications

Exploratory Indications

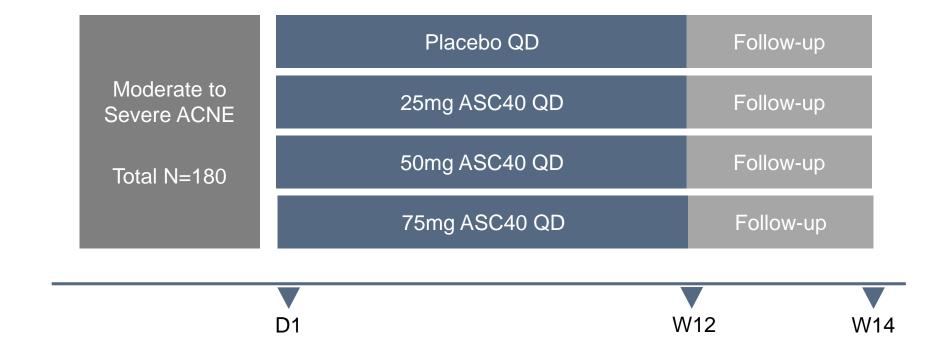
Acne

Target	Candidate	Commercial rights	Pre-IND	IND	Phase I	Phase II	Phase III	Competitiveness
FASN	ASC40	Greater China ¹						FIC Reduced sebum production in a dose- dependent manner in phase I study

^{1.} ASC40 is licensed from Sagimet Biosciences Inc. for the exclusive rights in the Greater China.

Acne

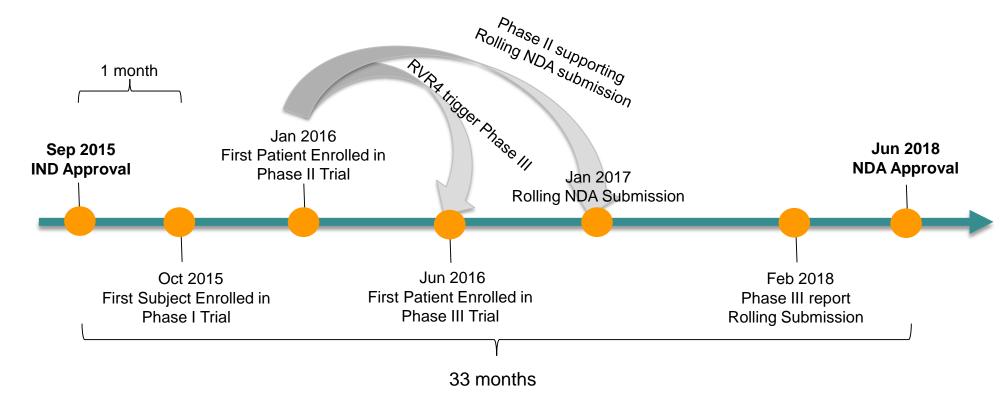
- Eighth most prevalent disease in the world and affects more than 640 million people globally
 - The onset of acne often coincides with pubertal hormonal changes, and the condition affects approximately 85% of adolescents and young adults aged 12 to 25 years.
 - However, acne can also persist into or develop during adulthood.
- A report recently published by Allied Market Research indicated that the global acne medication market size was US\$11.86 billion in 2019, and is projected to reach US\$13.35 billion by 2027.
 - > Current first-line treatments for acne include topical creams such as topical retinoids and androgen receptor inhibitor, oral isotretinoin, and antibiotics.



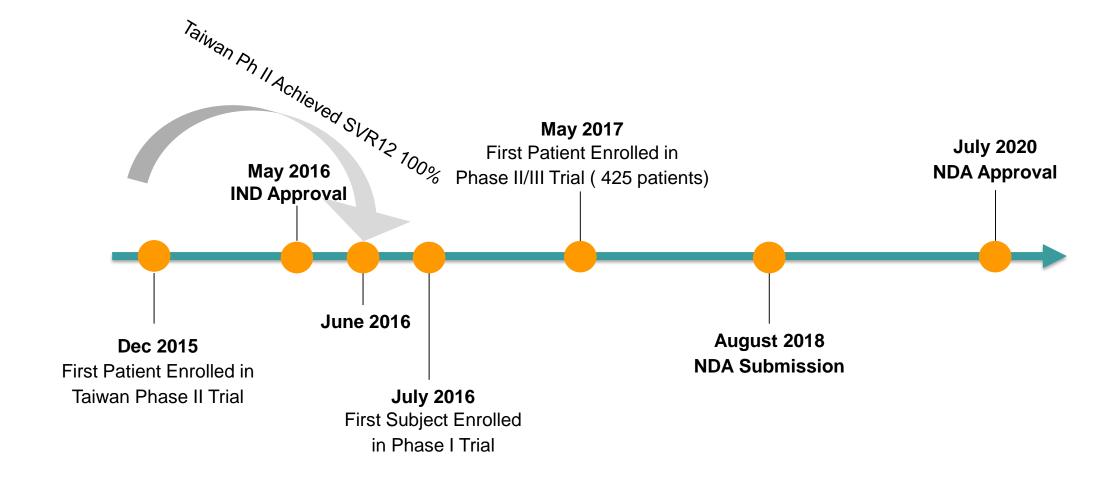
ASC40: A first-in-class drug with novel mechanism of action for Acne

- Fatty acid synthase (FASN) is a key enzyme which regulates de novo lipogenesis.
 - ➤ Human sebum production requires de novo lipogenesis, which is increased in acne and suppressed by the FASN inhibitor ASC40.
- Clinical proof concept data
 - Clinical study indicated that sebum production was inhibited by ASC40 in a dose-dependent fashion

ASC40: China Phase II Study Design for Acne



R&D Execution Excellence GMP Manufacturing Capacity Commercialization Capability


R&D Efficiency: GANOVO® from IND to NDA Approval: 33 months

Company (Target)	IND Approval	NDA Approval	IND approval to NDA approval (months)
Ascletis (HCV NS3/4A)	Sept 2015	June 2018	33
BMS (HCV NS3/4A and 5A)	June 2013	June 2017	48

R&D Efficiency: ASCLEVIR® from IND to NDA Approval: 50 months


GMP Manufacturing Facilities

GMP Certified

- Quality-by-design approach implemented
- Complied with cGMP

Quality Assurance

 State-of-art equipment with cutting-edge technology capabilities

International Standards

 Experienced manufacturing employees from MNCs

Supply ensured

Production capacity of 130 million tablets

Experienced and Extensive Sales Network

Experienced Team

5 major units including medical affairs, sales, marketing strategy, market access, and channel / distribution

Directors and above management have 10+ years experience of HCV and HBV at the above representative companies

Network Coverage

- ~1,000 Hospitals located in regions where hepatitis B&C is most prevalent in China
- ~5,400 specialists and key opinion leaders covered in the hepatitis field
- 22 distribution agreements with major distributors, enabling nationwide coverage and timely delivery of products.

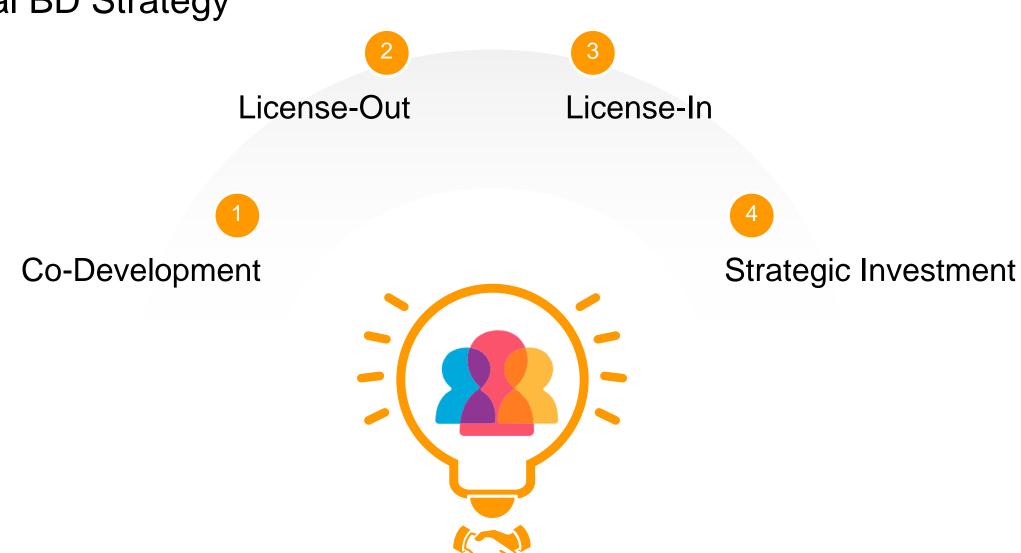
Strategy

- Branding Activities and Market Research
- Patients Research and Analysis
- HCV/HBV Awareness Raising

GANOVO®
2018
NDA Approved GMP Certified Inaugural Sales
June 14
June 27

Global Business Development Strategy

Global Partnerships



Global BD Strategy

Co-Development: Areas of Interest

- ASC22 (subcu PD-L1antibody) + siRNA
- ASC22 + Capsid inhibitor
- ASC22 + Entry inhibitor

GLP-1/GLP-1R

- ASC42 (FXR) + subcu weekly GLP-1
 / GLP-1R
- ASC40(FASN) + subcu weekly GLP-1 / GLP-1R

SGLT

- ASC42 (FXR) + oral QD SGLT drug
- ASC41 (THRβ) + oral QD SGLT drug

- GBM: ASC40 (lipid metabolism drug)+bevatzamab
- mBC: ASC40 + other drug
- KRAS mutation: ASC40 + other drug

License-Out: Areas of Interest

- ASC41 (THRβ)
- ASC42 (FXR)

HBV

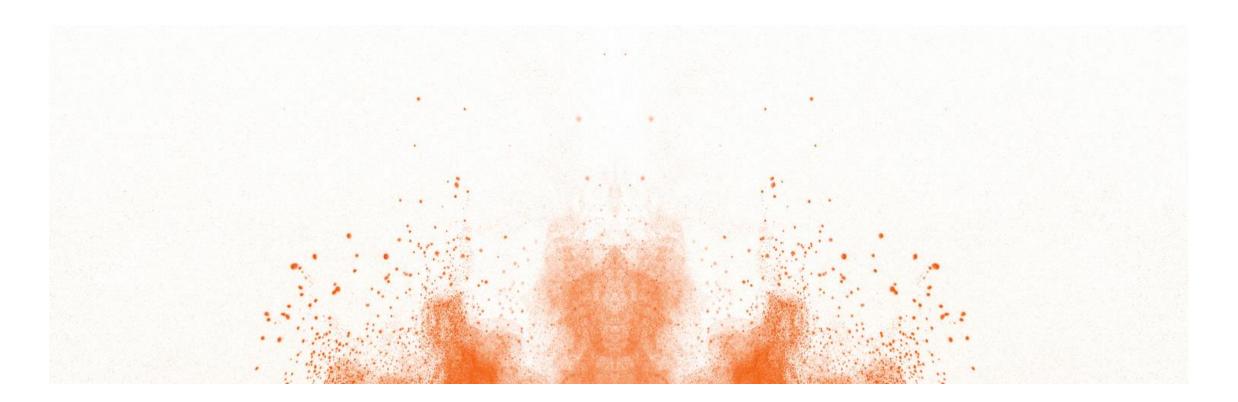
Oncology

License-In: Areas of Interest

HBV

Oncology

Disclaimer


Certain statements contained in this presentation and in the accompanying oral presentation as well as subsequent discussion (if any) may constitute forward-looking statements. Examples of such forward-looking statements include statements regarding Ascletis' research and discovery, pre-clinical and clinical programs and plans of candidate drugs, the conduct of clinical trials and expected data readouts, planned commercial product launches, the advancement of and anticipated clinical development, regulatory milestones and commercialization of Ascletis' medicines and drug candidates. Actual results may differ materially from those indicated in the forward-looking statements as a result of various important factors, including Ascletis' ability to demonstrate the efficacy and safety of its drug candidates; the clinical results for its drug candidates, which may not support further development or marketing approval; actions of regulatory agencies, which may affect the initiation, timing and progress of clinical trials and marketing approval; Ascletis' ability to achieve commercial success for its marketed medicines and drug candidates, if approved; Ascletis' ability to obtain and maintain protection of intellectual property for its medicines and technology; Ascletis reliance on third parties to conduct drug development, manufacturing and other services; Ascletis' limited experience in obtaining regulatory approvals and commercializing pharmaceutical products and its ability to obtain additional funding for operations and to complete the development, regulatory, commercial and other operations, as well as those risks discussed in the section entitled "Major Risk Factors, Uncertainties and Risk Control" in Ascletis' most recent Annual Report filed with the Hong Kong Stock Exchange. The performance and results achieved by Ascletis in this presentation and in the accompanying oral presentation as well as subsequent discussion (if any) are historical in nature, and past performance is no guarantee of the future results.

The information, statements and opinions contained in this presentation and in the accompanying oral presentation as well as subsequent discussion (if any) do not constitute an offer to sell or solicitation of any offer to subscribe for or purchase any securities or other financial instruments or any advice or recommendation in respect of such securities or other financial instruments in any jurisdiction. In particular, this presentation is not an offer of securities for sale nor a solicitation of an offer to buy securities.

This presentation is provided for investment purposes only. All information in this presentation is as of the date of this presentation, and Ascletis undertakes no duty to update such information unless required by law, and no liability in the event that any of the forward-looking statements or opinions do not materialize or turn out to be incorrect.

This presentation and the accompanying oral presentation contain data and information obtained from third-party studies and internal company analysis of such data and information. Ascletis has not independently verified the data and information obtained from these sources. Forward-looking information obtained from these sources is subject to the same qualifications noted above.

Thanks

Innovative cures liberate life to the fullest